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GPUs and the General Purpose GPU (GPGPU)

GPUs have become very popular in scientific computing in the
past few decades.
Despite being originally developed for the gaming industry, it
has spread its influence to numerous areas.
Thus, GPGPUs are being used in astronomy, medicine,
finance, mathematics and bioinformatics.
GPUs are massively parallel and outperform even the best
parallelized algorithms from CPUs.
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Application Programming Interfaces (APIs) for GPU
Programming

CUDA is one API used mostly with GPUs.
However, we use OpenACC here because:

OpenACC allows for preprocessor directives included in
program.
Program does not have to be completely modified as in CUDA.
Allows for program to be implemented even without GPUs
unlike CUDA programs which are solely for GPUs.
OpenACC supports all accelerators.
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OpenACC Granularity

There are three levels in OpenACC execution model.
The gangs, workers and vector.
This is supposed to map to any architecture.
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Parallelization of Replica Exchange Monte Carlo (REMC)

Monte Carlo simulations use random numbers to model
populations
REMC is a Monte Carlo Method that involves swapping of
replicas at different temperatures
In REMC, simulations of several replicas are implemented at
different temperatures, T
After some Monte Carlo time step, updates are performed
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Replica Exchange Monte Carlo (REMC)
Updates are accepted based on Metropolis criterion with
probability

p given by:

p = min(1, exp[−β(Enew − Eold)]),
(1)

Attempt to exchange neighboring replicas is initiated following
a number of Monte Carlo updates
Replica exchanges are accepted based on given probabilities

p = min(1, exp[(βi − βi+1)(Enew − Eold)]),
(2)

With Parallel REMC, several replicas are simulated in Parallel
to reduce computational time
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Schema of REMC
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Parallelization of Replica Exchanges

REMC perform concurrent simulations of n different replicas
of the Monte Carlo system, each running under different
temperatures
Systems at high temperatures are able to explore a larger
volume of the phase space than at low temperatures
During the swapping phase, replicas are exchanged between
temperatures by a stochastic process that uses Eqn. (1).
Replica Exchange simulation by itself requires a relatively
small communication between replicas, thus, each replica can
run on a single processor in multi-core settings.
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Parallelization of Energy Computation of Conformations

Though this works well with small to modestly sized Monte
Carlo systems, it becomes a problem with many replicas and
longer simulation times.
This necessitates high-performance computing approach and
GPUs.
Energy computations are the most expensive of the REMC
process.
Replicas are moved from state i to j and the improvement of
these movements are guided by the energy functions of the
system.
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Parallelization of Energy Computation of Conformations

The energy function has two main categories
those based on replicas ability to satisfy distance and contact
restraints,
and the other based on physical and statistical energy scores.
The physical energy scores include van der Waals and
electrostatic potentials.
Whereas the statistical energy scores are derived from
structural databases.
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Parallelization of Energy Computation of Conformations

For each replica in the system, we parallelize the operations by
invoking several OpenACC gangs for the computations
For each gang, several OpenACC threads are launched.
A maximum of 1024 threads are launched per gang
These launched threads partition the tasks in a parallel region
among themselves
Similarly for the energy scores, we assign each to its compute
region
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Parallelization of Energy Computation of Conformations

The energy functions are summed for the potential energy of
the system, thus, there is the need for communication of
updated energy scores.
These communication of updated energy scores and the data
required for the computations introduces an enormous data
transfer challenge with this optimization.
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Parallelization of Energy Computation of Conformations

EHB, ESHORT, Energytot calculate statistical energy
component, energy based on contact and distance restraints
and total energy.
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Flow Chart of Parallelization of REMC
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Parallelization of Monte Carlo Moves/Updates

Several Monte Carlo moves/updates are attempted in a
Monte Carlo process.
Updates at high temperatures that change the energy of the
system have a higher probability of being accepted based on
Eqn (1).
A move from state i to state j is denoted by the transition
matrix:

Mij = βijpij (3)

βij is the probability of attempting a move between the two
states and pij is the probability of accepting the move, which
is Eqn 1.
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Parallelization of Monte Carlo Moves/Updates

The moves change the torsional angle and any bond angles of
the atom.
We consider 2,3,4,5 and 6 bond moves for the system.
Each move is assigned a compute region, meaning several
thread blocks are used.
Some of these threads are responsible for the calculation of
the change in energy, used to determine whether a
move/update should be accepted or rejected.
There is therefore a communication of energy scores from the
energy regions to the moves/updates.
After several of Monte Carlo moves/updates, replica swaps
are initiated which are also accepted based on energy changes.
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Specifications of the Hardware used

- reference CPU GPU1 GPU2
name Intel Xeon E5-2680v3 Pascal P100 Kepler K80

Node counts 1944 36 36
Cores per socket 12 14 12

RAM 128GB 128GB 128GB
clock speed 2.5GHz 2.4GHz 2.5GHz

Speed-up is given by:

Sp = tCPU
tGPU

,
(4)

The runtime on the GPU and CPU are tGPU and tCPU
respectively
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Case Study of REMC Method in I-TASSER

We consider a performance comparison of just the REMC of
top performing protein structure prediction method from our
comprehensive review.
I-TASSER is top performing protein structure predictor based
on our review, hence we use it for our case study.
Used sequence of length 146, obtained Average speedup of
3.6x.

Table: Performance Comparison of Energy Computations

Energy Computations tCPU/s tGPU/s Sp

EHB 4458.28 1177.57 3.8
ESHORT 2427.56 709.71 3.4

All Energies 6885.84 1887.28 3.6
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Case Study of REMC Method in I-TASSER

We compare the moves in serial and GPU REMC

Table: Comparing Serial and GPU Moves

MC Moves tCPU/s tGPU/s Sp

Move2 262.86 35.09 7.5
Move3d 107.56 11.83 9.1
Move3s 68.86 8.40 8.2
Move4d 60.10 7.09 8.5
Move4s 42.16 4.99 8.4
Move5d 52.97 6.98 7.6
Move5s 37.82 4.75 8.0
Move6 16.77 3.35 5.0

All Moves 649.1 79.75 8.1

We observe a peak speedup of 9.1x with average 8.1x
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Serial REMC Vs. GPU REMC for Energies
We compare the time from serial and GPU versions for the
energy computations

Figure: SpeedUp.
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Serial REMC Vs. GPU REMC for MC Moves
We see execution time for the serial rising steadily while that
for the GPU is contained.

Figure: MC Moves.
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Conclusion

We have successfully parallelized REMC method on GPUs.
We observed a peak speedup of 9.1x from the Monte Carlo
moves.
An average speedup of 8.1 across the moves.
Peak speedup of 3.8 over the energy computations which is
the most expensive.
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Thank You!
Questions?
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